Absence of persistent spreading, branching, and adhesion in GAP-43- depleted growth cones

نویسندگان

  • L Aigner
  • P Caroni
چکیده

The growth-associated protein GAP-43 is a major protein kinase C substrate of growth cones and developing nerve terminals. In the growth cone, it accumulates near the plasma membrane, where it associates with the cortical cytoskeleton and membranes. The role of GAP-43 in neurite outgrowth is not yet clear, but recent findings suggest that it may be a crucial competence factor in this process. To define the role of GAP-43 in growth cone activity, we have analyzed neurite outgrowth and growth cone activity in primary sensory neurons depleted of GAP-43 by a specific antisense oligonucleotide procedure. Under optimal culture conditions, but in the absence of GAP-43, growth cones adhered poorly, displayed highly dynamic but unstable lamellar extensions, and were strikingly devoid of local f-actin concentrations. Upon stimulation, they failed to produce NGF-induced spreading or insulin-like growth factor-1-induced branching, whereas growth factor-induced phosphotyrosine immunoreactivity and acceleration of neurite elongation were not impaired. Unlike their GAP-43-expressing counterparts, they readily retracted when exposed to inhibitory central nervous system myelin-derived liposomes. Frequency and extent of induced retraction were attenuated by NGF. Our results indicate that GAP-43 can promote f-actin accumulation, evoked morphogenic activity, and resistance to retraction of the growth cone, suggesting that it may promote regulated neurite outgrowth during development and regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depletion of 43-kD growth-associated protein in primary sensory neurons leads to diminished formation and spreading of growth cones

The 43-kD growth-associated protein (GAP-43) is a major protein kinase C (PKC) substrate of growing axons, and of developing nerve terminals and glial cells. It is a highly hydrophilic protein associated with the cortical cytoskeleton and membranes. In neurons it is rapidly transported from the cell body to growth cones and nerve terminals, where it accumulates. To define the role of GAP-43 in ...

متن کامل

Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones.

The mechanisms whereby cell adhesion molecules (CAMs) promote axonal growth and synaptic plasticity are poorly understood. Here we show that the neurite outgrowth stimulated by NCAM-mediated fibroblast growth factor (FGF) receptor activation in cerebellar granule cells is associated with increased GAP-43 phosphorylation on serine-41. In contrast, neither NCAM nor FGF was able to stimulate neuri...

متن کامل

Phosphorylation-site mutagenesis of the growth-associated protein GAP- 43 modulates its effects on cell spreading and morphology

The 43-kD growth-associated protein (GAP-43) is a major protein kinase C (PKC) substrate of axonal growth cones, developing nerve terminals, regenerating axons, and adult central nervous system areas associated with plasticity. It is a cytosolic protein associated with the cortical cytoskeleton and the plasmalemma. Membrane association of GAP-43 is mediated by palmitoylation at Cys3Cys4. In vit...

متن کامل

Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43

Growth cones, the motile apparatus at the ends of elongating axons, are sites of extensive and dynamic membrane-cytoskeletal interaction and insertion of new membrane into the growing axon. One of the most abundant proteins in growth cone membranes is a protein designated GAP-43, whose synthesis increases dramatically in most neurons during periods of axon development or regeneration. We have b...

متن کامل

GAP-43 mRNA in growth cones is associated with HuD and ribosomes.

The neuron-specific ELAV/Hu family member, HuD, interacts with and stabilizes GAP-43 mRNA in developing neurons, and leads to increased levels of GAP-43 protein. As GAP-43 protein is enriched in growth cones, it is of interest to determine if HuD and GAP-43 mRNA are associated in developing growth cones. HuD granules in growth cones are found in the central domain that is rich in microtubules a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 128  شماره 

صفحات  -

تاریخ انتشار 1995